Key to speeding up carbon sequestration in the ocean discovered

Scientists at Caltech and USC have discovered a way to speed up the slow part of the chemical reaction that ultimately helps the earth to safely lock away, or sequester, carbon dioxide into the ocean. Simply adding a common enzyme to the mix, the researchers have found, can make that rate-limiting part of the process go 500 times faster.

On paper, the reaction is fairly straightforward: Water plus carbon dioxide plus calcium carbonate equals dissolved calcium and bicarbonate ions in water. In practice, it is complex. “Somehow, calcium carbonate decides to spontaneously slice itself in half. But what is the actual chemical path that reaction takes?” Adkins says.

Studying the process with a secondary ion mass spectrometer (which analyzes the surface of a solid by bombarding it with a beam of ions) and a cavity ringdown spectrometer (which analyzes the 13C/12C ratio in solution), Subhas discovered that the slow part of the reaction is the conversion of carbon dioxide and water to carbonic acid.

“This reaction has been overlooked,” Subhas says. “The slow step is making and breaking carbon-oxygen bonds. They don’t like to break; they’re stable forms.”

Armed with this knowledge, the team added the enzyme carbonic anhydrase — which helps maintain the pH balance of blood in humans and other animals — and were able to speed up the reaction by orders of magnitude.

Key to speeding up carbon sequestration discovered | EurekAlert! Science News

That makes me wonder about the chemical limitation of carbon sequestration in soils.

Advertisements

Should you use plastic weed mat?

Comments and Questions 6 20 2017

Kevin answers questions and comments on his videos about a range of topics and emphasises the importance of soil, water and air.
Here I want to emphasise the importance of plants and organic mulch too.
weedmat
One of the comments on his Q&A video was the following after seeing Kevin’s use of weed mat “to keep the soil covered”:

My only experience with weed mat, was pulling one up, and finding stinky dead earth beneath

Now it sounds like this person’s plastic weed mat caused the soil below it to turn anaerobic due to either a lack of air penetrating the mat or retaining too much moisture which then excluded the air from entering the soil. When this happens the soil begins to anaerobically digest and produce alcohols, phenols, and gasses such as methane, the scent of sewer gas.

Not ideal plant growing conditions!

However there can be benefits when using plastic weed mat in the right conditions that does let air and water through, as the mat can help keep the soil moist, especially in drier regions. Weed mats can also warm or cool the soil depending on how much sunlight they absorb or reflect. They can also help prevent erosion. But the main reason people use it, is because the mats also reduce weed competition for plants planted into or near the weed mat. Reduced competition for water, sunlight, and for nutrients.

However the biggest problem with plastic weed mat when growing and assuming the correct mat was chosen for the conditions, is that if left on for extended periods, the soil often tends to breed plant pathogens. This happens when soils are not amended with a high carbon source such as plant leaf litter, plant exudates, or an organic mulch.

In soils that are kept moist and aerated and warm the microbiology and fauna become more active and will chomp through organic matter like there is no tomorrow. In doing so there is an increase in soil carbon respiration in the form of carbon dioxide and methane along with other gasses. This increase in respiration can actually help increase plant growth by providing carbon dioxide concentrated around the plant leaves. The increase in microbiological activity also increases nutrient cycling and plant available soil nutrients. However if the plants aren’t putting the carbon back into the soil via their roots, exudates, or plant litter when they die – then over the long term the soil community suffers.

When there is a lack of high carbon input that organic mulch provides to soil organisms, competition for that soil carbon increases. And the less soil carbon, the less complex organisms will survive. This is particularly important for fungi that rely on the carbon because they are made up of more carbon than other microbiology. Worse, the fungi that do survive the hostile conditions are often those that are plant predators able to fight for the carbon needed in order to survive because they now lack competition. As a result those predators infect plants and reduce yields or even kill them, and so gardeners and farmers search for solutions to their fungal problems in the form of fungicides. As a result fungi get a bad name. The same happens to nematodes.

However for short season plants like seasonal crops in Kevin’s example, this may not be much of a problem as the plant may be ready for harvest before the predators have overcome a plants defences, and he’s adding organic matter every year.

To conclude, when organic resources are plentiful, everyone’s happy and works in symbiosis, and when they’re not happy it’s war. Not quite extremophile Star Wars, but certainly localised Planet Wars, and eventually those wars include us higher order carbon beings in Human Wars that result from desertification and a lack of resources.

Plastic mulch is also plastic. Did you know that most sea salt already has microplastics in it after a little over 100 years of plastics use?

Benefits of Molasses for the Garden? Soil Priming! [Commentary]

Not scientific? Master Gardener? *Alarm bells*

Glucose, a six-carbon sugar is one of the sugars in molasses. It can prime carbon in the soil, increasing soil organic matter decomposition by bacteria that make it more plant available as dissolved organic matter.

Priming or a “Priming Effect” is said to occur when something that is added to soil or compost affects the rate of decomposition occurring on the soil organic matter (SOM), either positively or negatively. Organic matter is made up mostly of carbon and nitrogen, so adding a substrate containing certain ratios of these nutrients to soil may affect the microbes that are mineralizing SOM. Fertilizers, plant litter, detritus, and carbohydrate exhudates from living roots, can potentially positively or negatively prime SOM decomposition

https://en.wikipedia.org/wiki/Priming_(microbiology)

Look at fig (3c) for organic soil here:

glucose-ammonoium-priming
The red indicates positive carbon priming when glucose is added.
Notice how different the glucose priming effects are for wood (a), leaf (b), organic soil (c) and mineral soils (d) in each of the squares. Think about why that might be, and where the carbon-based lifeforms are most abundant. The organic soil!

Priming is how organic soils are formed when plants exude carbon compounds from their roots to feed soil microbes.

Unfortunately not all soils provide enough nutrients to the plants to create enough exudates to prime soil carbon and maintain nutrient cycling, and soil carbon is mostly determined by rainfall (78%) and how land is managed, which is why we tend to augment soils with fertilizers that perform this priming.

As shown in fig (3c), priming soils and composts with nitrogen can also aid this process, an example of priming compost are these “dreadlock” roots formed when using “Next Gen” compost that adds nitrogen and other minerals.

Priming, however it’s done, generally results in higher dissolved organic matter and microbial abundance, diversity and nutrient cycling resulting in more plant available nutrients.

Soil carbon to nitrogen ratios can determine whether carbon or nitrogen is the best choice to prime organic matter and will depend on the soil and the optimum range that soil microbes like fungi that knit the soil food web together like to feed on. Typically that’s the C:N of 30:1 that microbes are made of. Probably why there’s a tipping point at 3% soil carbon. Many bare and underperforming soils are well below this and crave carbon. Priming soil organic carbon is how biochar works so long as you add enough

The type of carbon or nitrogen source when priming is important too, as it may alter microbial communities. The more complex the carbon source the more potential there may be for enzymatic pathways that the microbes can express to create compounds that change their environment.

Different species of plants change their own environments by exuding different exudates that host different microbes that build the environment for them.

Doing the work of the plant by amending soils ourselves may benefit or hinder these microbes.

It’s important to note that many types of molasses are heavily processed and end up with sugars but very few minerals in them, and this may change the microbial community detrimentally.

What gets added to white sugar to make it brown? Molasses.

You can see it does contain and add some minerals.

maple-syrup

In general, the less processed something is, the more minerals it contains, and the more diversity it will support, thereby allowing the plant to feed and select for the microbes it wants through its exudates rather than what will eat what we amend the soils with.

Cultivate those soil microbes with carbon where appropriate.

Soil Carbon Mineralization Limits.

A new study titled Is the rate of mineralization of soil organic carbon under microbiological control? suggests that:

  • the rate limiting step in SOC mineralization is abiotic (physical rather than biological).
  • that mineralization of SOC may be a two-stage process: firstly, non-bioavailable forms are converted abiologically to bioavailable forms, which, only then, undergo a second process, biological mineralization.

I’ll speculate and say that mineralization is perhaps limited by dissolved organic matter in the form of complex carbon structures that are produced by weathering, oxidation, and detritivores that break apart plant litter. Liquid compounds that tend to be lost when composting.

Compounds that are probably why wet climates and seagrasses sequester the most carbon.

Why drying and wetting of these compounds leads to CO2-Bursts.

Compounds we should be trying to keep in the soil profile doing good, and not in aquifers or waterways creating algal blooms, like we really need to with this recently discovered underground molten lake the size of Mexico!

That depending on the complexity of the carbon molecule as it gets passed down the soil carbon continuum food web it may be more than a two-stage process, with more than one in both the physical and biological realms based upon chemical energy and chemisorption of the carbon compounds.

*shrugs* Just my guess, I suck at chemistry.

Chemisorption:Screenshot from 2017-05-21 12-34-28.png

Why microbes sometimes fail to break down organic carbon in soils

A new study has found that:

In oxygen-starved places such as marshes and in floodplains, microorganisms do not equally break down all of the available organic matter. Instead, carbon compounds that do not provide enough energy to be worthwhile for microorganisms to degrade end up accumulating. This passed-over carbon, however, does not necessarily stay locked away below ground in the long run. Being water soluble, the carbon can seep into nearby oxygen-rich waterways, where microbes readily consume it.

Tests found that, in contrast to the layers where oxygen was available, leftover carbon compounds in the sediment samples where sulfur had been used for respiration instead of oxygen were mostly of the sort that requires more energy to degrade than would be liberated through the degradation itself. Making these carbon compounds of no use, then, to growing microbes, and had remained within the deeper sediment layers.

Shunned by microbes, organic carbon can resist breakdown in underground environments, Stanford scientists say | Stanford School of Earth, Energy & Environmental Sciences

Soil Carbon, Grazing & Cropping Grasslands of Alberta, Canada

114 site study.

skpcap

Grazing:

  • Grazing increased plant diversity
  • Grazing increased introduced species in higher rainfall (>350mm May – Sept) areas
  • Grazing increased aboveground biomass productivity in high rainfall areas, decreased it in lower rainfall areas.
  • Grazing saw no change in SOC in the 6 study regions.
  • Grazing increased root growth in the top 30cm of soil in high rainfall areas.
  • Grazing increased decomposition of plant litter in high rainfall areas.
  • Grazing lowers CO2/N20 flux.
  • Rotational grazing (High intensity, low frequency) significantly lowered CH4 production.
  • Native grasslands store most carbon.

Conclusion: Rotational grazing native grasslands in high rainfall areas FTW.

Cropping:

root mass.png

  • Perennial grasslands produce higher below ground biomass than above
  • Cultivation leads to a rapid loss 30-60% of soil C
  • Continuous wheat cropping led to 19% loss of C
  • Cropping saw 30-40% C loss after 5 years.
  • Silvopasture (perennial pasture system) produced least CO2
  • Naturally re-vegetated areas failed to recover even after 50 years.

Conclusion: Silvopasture intercropping FTW.

Basically what Colin Seis does with Pasture Cropping native grasses.