Field Trial with Poultry Litter Biochar Versus Inorganic Phosphorus Application, Florida

Advertisements

Is Our Food Becoming Less Nutritious?

The documentary is available on SBS onDemand in Australia,

This isn’t really news to anyone that reads the science:
Trees and climate change: Faster growth, lighter wood | EurekAlert! Science News https://www.eurekalert.org/pub_releases/2018-08/tuom-tac081418.php

Red Tide – Phytoplanktom Blooms, and One-Rock Filter Dams

Phytoplankton are Earth’s life raft!

Near the end of this Walde Sailing video they show a red substance in water.
This is commonly known as red tide. Red tide is likely an iron-rich phytoplankton bloom. When nitrogen and iron are added in combination from sediment run-off or pollution to waters then chlorophyll a concentrations can increase 40-fold leading to diatom proliferation, and reduced community diversity.
Nutient addition like this can also lead to coral bleaching and die off.
After blooming these organisms die and sink in the water column where microbes consume them and deplete the oxygen resulting in dead zones with little sea life. A dead zone the size of Scotland in the Gulf of Oman was recently discovered by robots exploring the Arabian sea, previously unknown because the area wasn’t safe for humans to do the sampling.
Still waters and a lack of mixing with air exacerbates these dead zones especially at lower depths.

Scientists also recently concluded that the last massive extinction event in earths history was the result of anoxia.

Oxygen is the byproduct of phytoplankton and they are responsible for the bulk of atmospheric oxygen when the cycle is regulated. We don’t want them dieing off in these explosive life raft blooms!

oxygen.png
We can minimise anoxia in our oceans while still benefitting from phytoplankon oxygen production by reducing nutrient run-off in sediment from land with techniques like simple one-rock high filter dams seeded with plants to grow in the sediment and act as biofilters. This applies not only to our oceans but also inland waters, where even our water supply is at risk from sedimentation and a reduction in water volume in fresh water reserviors we get out drinking and irrigation waters from.

screenshot-0
Here’s a Great Barrier Reef rock gulley success story.
Here are one-rock high filter dam pictures

one-rock gulleyone-rock

Wild Harvesting Mycorrhizal Fungi Using THESE?

Reading the comments on this one prompted me to comment…

Communities of saprotrophic (“rotten material” + “plant”) fungal hyphae (web) that break down wood chips and above ground plant litter tend to fruit mushrooms to spread their spores by air, mold uses explosive sacs to spread their spores into the air, whereas root-associated endo (internal to the root) or ecto (external) mycorrhizae (“fungus” + “root”) form symbiotic relationships with living plants and reproduce from spores in sacs on the hyphae (web) at the roots. Without plants to host them, mycorrhizae tend to die off. The different types are also often vertically separated in soils. So you want both types, and collecting above ground litter and below ground feeder roots can help spread the latter. Succession in forests has been shown to correlate with the interconnectedness of plants and so collecting fungal species that can interconnect plants at their roots or decompose material aboveground to feed them will aid succession. When a tree falls and is left to decompose it creates a food pathway for fungal hyphae to create super highways connecting plants. We can replicate this by leaving intact trunks or branches in contact with soil between plants. One of the highest minerals in trees is potassium, and potassium increases the colonisation of plant roots by mycorrhizae.
The white strings aka hyphae (webs) often seen in wood chips and compost can also be formed by bacteria such as Actinomycetes.

There have also been studies showing that most products claiming to contant inoculants that have mycorrhizal spores, don’t.