Palagonite – What you get when you mix lava with water

On the surface it looks just like a fine sand but unlike sand there must be something about the micro-structure of this material that holds much more water than expected.

palagonitic-dust

Pore space for water holding and cation exchange.

palagonitic dust, which contains hydrated and hydroxylated volcanic glass of basaltic composition, accommodates significantly more H2O under comparable humidity and temperature conditions than do the smectites nontronite and montmorillonite.

What’s in Palagonite?

Elements of Australian Fine Palagonite:

palagonite major_elements

How is it formed?

hugefloods

Does it make a good soil amendment?

Overview of Palagonite for Organic Farming

Personally, when used as a soil amendment, I’d prefer something with lower levels of Aluminium Oxide and Titanium Dioxide, Sodium Oxide is borderline too, but you can’t argue with the results when mixed with compost.

Composting with Palagonite:

Additional details:

Food is not just the sum of its nutrients.

The nutritional value of a food should be evaluated on the basis of the foodstuff as a whole, and not as an effect of the individual nutrients. This is the conclusion of an international expert panel of epidemiologists, physicians, food and nutrition scientists.

“Researchers have become more skilful over the years, and we have acquired more methods for exploring what specific nutrients mean for digestion and health,” Tanja continues “But when we eat, we do not consume individual nutrients. We eat the whole food. Either alone or together with other foods in a meal. It therefore seems obvious that we should assess food products in context.”

Ultimately this means that the composition of a food can alter the properties of the nutrients contained within it, in ways that cannot be predicted on the basis of an analysis of the individual nutrients.

Tanja Kongerslev Thorning explains further “An example is almonds, which contain a lot of fat, but which release less fat than expected during digestion. Even when chewed really well. The effects on health of a food item are probably a combination of the relationship between its nutrients, and also of the methods used in its preparation or production. This means that some foods may be better for us, or less healthy, than is currently believed.”

Food is not just the sum of its nutrients. – University of Copenhagen

I wish more scientists thought like this and considered the entire living ecosystem that is our food, including the microbes they often contain. Instead we get studies that tell us the best way to cook that measure “nutritional value” like this one on mushrooms:

Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms: International Journal of Food Sciences and Nutrition: Vol 68, No 3

Breaking the Oxygen Barrier in Microbial Cultivation

Oxygen comprises one fifth of our atmosphere, and we take for granted that this a good thing. After all, aerobic creatures like ourselves could not exist without free O2. Not all life shares this feeling. Oxygen and its derivatives (known as “reactive oxygen species” or ROS) can wreak havoc on the biochemistry of many microbes. For some obligate anaerobes such as methane-producing archaea, even a small trace of oxygen poisons them irreversibly (see, for example Kiener and Leisinger 1983). Others fall somewhere in the middle. Microaerophiles (e.g. Helicobacter pylori, the cause of gastric ulcers) require small amounts of oxygen but are unable to tolerate full atmospheric concentrations (Bury-Moné et al., 2006).

Why are these organisms sensitive to oxygen?

Find out why at:
Small Things Considered: Breaking the Oxygen Barrier in Microbial Cultivation

Foliar feeding with slow release biohybrid microgels

A team from DWI-Leibniz Institute for Interactive Materials in Aachen, RWTH Aachen University, and the University of Bonn has now developed a foliar fertilization system based on biocompatible microgels that adhere selectively to leaves for a long period and slowly deliver nutrients in a controlled fashion. Microgels are tiny particles of cross-linked macromolecules that can bind water and other molecules, such as fertilizers very efficiently.

Led by Ulrich Schwaneberg and Andrij Pich, the researchers equipped the interiors of gel particles with binding sites modeled on the iron-binding proteins of bacteria. These ensure that the iron ions are released slowly. The microgels are loaded with an iron-containing solution at a pH of 3. When the pH rises to 7, the microgels shrink, releasing water and binding the iron.

The surface of the gel particles is equipped with anchor peptides from lactic acid bacteria. These bind securely to leaf surfaces to hinder rinsing away of the microgels. The water in the gel provides an aqueous microenvironment that allows the iron to diffuse into the leaves. Yellow leaves of iron-deficient cucumber plants rapidly turned green in spots where the new foliar fertilizer was applied.

By incorporating different binding sites, the microgel “containers” can be loaded with a multitude of other metal ions or agents. A controlled delivery of agents as required would minimize the applied quantities as well as the release of fertilizers and pesticides into the environment. Low production costs, high levels of loading, easy application, and adjustable adhesive properties should make broad industrial applications possible. The goal is to make self-regulating delivery systems for sustainable agriculture.

Biofunctional Microgel-Based Fertilizers for Controlled Foliar Delivery of Nutrients to Plants – Meurer – 2017 – Angewandte Chemie International Edition – Wiley Online Library

Soil Carbon Mineralization Limits.

A new study titled Is the rate of mineralization of soil organic carbon under microbiological control? suggests that:

  • the rate limiting step in SOC mineralization is abiotic (physical rather than biological).
  • that mineralization of SOC may be a two-stage process: firstly, non-bioavailable forms are converted abiologically to bioavailable forms, which, only then, undergo a second process, biological mineralization.

I’ll speculate and say that mineralization is perhaps limited by dissolved organic carbon in the form of plant exudates, and humates with complex and random chemical structures that are produced by weathering and detritivores that consume plant litter. Liquid compounds that tend to be lost when composting.

Compounds that are probably why wet climates and seagrasses sequester the most carbon.

Why drying and wetting of these compounds leads to CO2-Bursts.

Compounds we should be trying to keep in the soil profile doing good, and not in aquifers or waterways creating algal blooms, like we really need to with this recently discovered underground molten lake the size of Mexico!

That depending on the complexity of the carbon molecule as it gets passed down the soil carbon continuum food web it may be more than a two-stage process, with more than one in both the physical and biological realms based upon chemical energy and chemisorption of the carbon compounds.

*shrugs* Just my guess, I suck at chemistry.

Chemisorption:Screenshot from 2017-05-21 12-34-28.png

Biodiversity can offer protection to weaker species

140565_web

A new Yale-led study of fungi competition illustrates that maintaining a diverse collection of species indeed not only safeguards weaker species but also protects the genetic diversity of the larger community.

For the study, the researchers observed interactions between 37 distinct types of wood-decay fungi, which are any species of fungi that grow on dead wood. Unlike other plants, fungi species grow toward other species and compete for space.

Typically the fungi would meet near the center of the petri dish after about 20 days, after which they would begin an “interference competition” in which each species sought to overtake the other and claim available space.

Often the competitions would end in a stalemate. But in many cases the stronger species would overtake the other, growing on top of and then decomposing the weaker species.

While the most competitive fungal species tended to grow fast, an effective offensive strategy, the researchers found that other species were more adept at playing defense. Some fungal species, for example, tended to remain fixed in one location, developing a dense biomass that became difficult to overcome even by the best offensive competitors. In so doing, these defensive fungi created a buffer between the stronger species and a weaker species.

The study is published today in the journal Nature Ecology and Evolution.

Biodynamic Horn Burial Explained & Biochar

Not very permaculture aye? Lots of mystic hand waving? Well… read on.

Ever wanted to know how “Preparation 500” is prepared? Or what’s in the end product?

The material was found to harbor a bacterial community of 2.38 × 10-8CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic
activities showed elevated values of β-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants.

Of the bacterial species, two dominated 90% of the culture. Half was Bacillus megaterium a plant growth promoting rhizobacteria (PGPR) known to produce Cytokinin. While the other half was Bacillus safensis another PGPR known to produce Auxins.

Cytokinins promote cell division and act in concert with auxins that promote cellular expansion. And, for example, the ratio of auxin to cytokinin in certain plant tissues determines initiation of root versus shoot buds.

Sounds like it should be called PGPR 500.

Diverse aboveground biomass for the soil organic carbon win

Now this is interesting:

“the rhizosphere priming effect was positively correlated with aboveground plant biomass, but surprisingly not with root biomass

  1. Grow diverse aboveground biomass
  2. Chop and drop
  3. Mulcho profit!

In a meta-analysis of 31 studies, researches show that the rhizosphere enhances soil organic carbon mineralization by 59%[*].

That woody species are best, then grass, then crops.

[Me: *So long as it’s fed from the above ground biomass litter.]

Sounds like C:Nhoosing Your Mulch? Think of the Fungi to me, and photosynthesise as much as you can be!

Don’t forget plant and mulch diversity in this mix, as Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling.

Another interesting study today suggests that soil fungal community is mainly influenced by plant community composition, distance between communities, and rainfall.

So go diverse and you can’t really lose.

Diverse ecosystems in connected communities.

Composting vs Pyrolysis of Humanure

Screenshot from 2017-05-07 13-39-36

This is a fascinating graph and a pretty confusing one. On the left is the mass yield value of humanure treated in different ways. On the right the value to a farmer for a ton of those different treatments. You can see for the producer on the left the 500C reduces yield, but for the farmer on the right they see higher value due to the cheaper material having a higher nutrient density. You can see below how the nutrient density increases with temperature in the graph below, so while the farmer needs twice as much 500C material as 200C, they see a higher value because of that increased nutrient density. At least that’s my understanding… watch the video below and decide for yourself.

Compost though? Seems like a pretty poor way to recover nutrients. Perhaps they’re more bioavailable though? Seems to me if you’re the producer and consumer the 300C may be the best option yield and CEC wise unless you lack potassium, but which actually produces the highest plant yield? I need to watch the video again, she talked and stumbled too much for my brain when I watched at 1AM in the morning and fell asleep. [To be continued]

Screenshot from 2017-05-07 13-49-58.png

Leilah Krounbi: Biologically and thermochemically altered human waste as fertilizers

Cornell SIPS