Working With Nature – A Holistic Management Story, NSW, Australia #Regenerative

Working With Nature – A Holistic Management Story from FriendlyFarms on Vimeo.

 

Advertisements

The Regenerative Omnivore & Permaculture #NoBareSoil #Regenivore

In the video below Rick responds to Curtis Stone’s myths about permaculture.

While watching Rick talk, I had a few thoughts:

The *first* principle of permaculture is observe and interact in any given context, *second* to obtain resources relevant to that context, *third* obtain a yield with those resources. Curtis’ beef is with the yield because he believes a permaculture zone 3-4 food forest should compete with zone 0 because “experts” somewhere said so.

Permaculture_Zones.svg.png

Maybe Curtis is right or maybe he doesn’t really comprehend zones, and the frequency and duration of work in those zones for the output. All his cropping is high intensity and long duration that I’ll call zone 0 (greenhouse) because it’s basically his home, & zone one-quarter because most of what he grows is young milti-annual crops that he harvests and transplants multiple times per season in his and the neighbours backyards. These are high turnover nitrate driven crops that he culls often in the middle of the vegetative growth stage of the sigmoid curve, only letting the most valuable annuals flower and fruit over the season like tomatoes.

sigmoid growth curve

The high nitrate crops then require external inputs (high nitrate turkey compost) for new seedling transplants to keep them in that vegetative growth stage. In doing so anytime he harvests or tilthers (shallow till) he disturbs the soil-plant ecosystem, even in no dig systems this happens between crops. It’s how most people garden and farm, so much so it can be considered the norm. So in Curtis and most of the world’s commercial minds eye they see it as the done thing because it yields results and order and is easier to harvest.

The one thing these commercial systems all do well is harvesting and removing life. Harvesting the pests, plants, nutrients, the ecosystems. On the other hand rarely do they perform well when it comes to  sequestering and adding life or regenerating ecosystems to support diversity.

On the other hand Rick’s example of a guild above where he’s stacking the harvest time of two perennial crops in the same place does a similar thing to Curtis’ multi-annual cropping but uses nitrifying soil microbes to produce ammonium for the perennials, including soil carbon sequestering mycorrhizae that need plant hosts. All while keeping the soil shaded, and fed and getting two crop harvests a season. Permaculture needs more people like Rick performing these guild experiments, recording and sharing yield results.

A recent favourite of mine that combines a bit of both is alley cropping in syntropic agriculture.

However permaculture really could better be showing producers and consumers actual yields and practices that produce them. With real metrics, examples.

I also think that Regenerative cropping really needs a movement behind it like vegetables have with vegans, but one for plant and animals foods that are soil and planet positive. There’s probably already a name for that?

For me, regenerative farming came to mind, so I came up with the name Regenivore, but when I googled I was greeted with no results.

Are there any consumer supported agriculture (CSA) initiatives that are regenerative focused? Standards bodies for Certified Regenerative produce?

#NoBareSoil

Functional Soil Carbon

Good video, though I’d like to add some comments, premised with the fact I’ve never taken an agronomy class. 🙂

Labile carbon mosly comes from air and top soil, driven by photosynthesis and oxygen reduction. It doesn’t need sunlight and water but they certainly form the dominant reactions. Sulfur and iron are also important for redox of carbon compounds, especially the deeper in the soil you get and the lower the energy state it is in. Without sulfur and iron, carbon lifeforms can’t oxidize certain carbon compounds and utilise them.

It doesn’t have to take 40-60 years to convert carbon in compost if the C:N ratio is in a working carbon priming range. Carbon priming of soils occurs between a C:N of 12:1 and 80:1 by microbes. The problem is that most composts use up all their nitrogen before field application and when the carbon in compost is applied to soils, microbes take up nitrogen and oxygen from the soil to break it down for use and thereby reduce plant available nitrogen and oxygen. Which is why here in Australia “Next Gen” compost that have slow release fertilzer added to it show excellent results.

Several plant species are also able to exude organic acids in response to toxic elements like Aluminium that tends to bind soil aggregates and increase soil density reducing plant air and water availability. Why it’s good to have a mix of plant species.

Organic acids in the carboxyl group like vinegar (acetic acid) have been shown in low doses to improve drought tolerance, effectively helping plants oxidize material for consumption. This is basically akin to Steve Solomon’s approach in Gardening Without Irrigation, by doing the work for the plants.

Sulfonic acids bring with them sulfur groups and an even stronger acid to break down material. One study on sterile meteroities that landed in deserts showed sulfur in the meteorite being used by indigenous microbes to break that meteorite down.

Other organic acids like phenols however can impede seedling root growth, so I’d only recommend them on established crops. Anaerobic practises like bokashi create these phenolic compounds.

Fungi also produce organic acids, and the more soil carbon you have the more fungi, the more carbon cycling.

As for disease, the less soil carbon you have, the more predatory organisms you have, like nematodes and fungi. When fungi don’t have enough carbon available they prey on plants to get that carbon. When there aren’t enough fungi to keep the nematodes in check, the nematodes prey on plants.

Everything needs that precious carbon to live above all else.

In the right environment, livestock can also play an important carbon cycling role with these organic acids and regenerative farming practices.

The integrated crop–livestock system showed the highest concentrations of dissolved soil organic C (78 μg C g−1 soil) as well as phenolic compounds (1.5 μg C g−1 soil), reducing sugars (23 μg C g−1 soil), and amino acids (0.76 μg N g−1 soil), and these components were up to 3-fold greater than soils under the other systems. However, soil β-glucosidase activity in the integrated crop–livestock system was significantly lower than the other systems and appeared to reflect the inhibitory role of soluble phenolics on this enzyme

Chemical composition of dissolved organic matter in agroecosystems: Correlations with soil enzyme activity and carbon and nitrogen mineralization – ScienceDirect