Biodynamic Horn Burial Explained & Biochar

Not very permaculture aye? Lots of mystic hand waving? Well… read on.

Ever wanted to know how “Preparation 500” is prepared? Or what’s in the end product?

The material was found to harbor a bacterial community of 2.38 × 10-8CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic
activities showed elevated values of β-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants.

Of the bacterial species, two dominated 90% of the culture. Half was Bacillus megaterium a plant growth promoting rhizobacteria (PGPR) known to produce Cytokinin. While the other half was Bacillus safensis another PGPR known to produce Auxins.

Cytokinins promote cell division and act in concert with auxins that promote cellular expansion. And, for example, the ratio of auxin to cytokinin in certain plant tissues determines initiation of root versus shoot buds.

Sounds like it should be called PGPR 500.

Plant Growth Promoting Rhizobacteria Biofertilisers.

Earth Man Living Soil

Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals) or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems.

Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective