The Biological Effect

Advertisements

Elaine Ingham Sharing Compost Tea Studies

The Profits In Your Soi: Reaching New Levels of Fertility on Farms, Pastures, Special Crops, and Forests from Raleigh Latham on Vimeo.

Almost all plant tissues contain endophytes

Accelerated decomposition of plant matter with fungi and endohypal bacteria? The dish on the right contains a fungi shown in the middle dish, but with an endohyphal bacteria living inside it.
fungi-bacteria symbiosis decomposition.png
Simple mixing of bacteria and fungi in solution to form these relationships?
Compost teas?

Microbes On Meteorites

Do Bacteria Live On Meteorites?? | SimplyScience by Kristie Tanner

Kristie summaries a paper that can be found here

Much more interesting than I thought it would be. The iron and sulphur makes me think about the amount of energy those elements provide to form reactions that sustain life(scroll down for pictures), and how differing amounts of those elements may influence the colonization.
I’m also reminded of the sea monster at the bottom of the carbon food chain where there’s little oxygen and energy is scarce.
To the other extreme where oxygen is rich and where historically moisture rich microbes respire excess carbon from soils.

Bonus video:

Why So Many Meteorites Come From The Same Place

Fats may limit cell organism size in carbon-rich media

lipids

Bacterial cells in carbon-rich media (purple and blue) grow twice as big as those in carbon-poor media (green). New research shows they can grow big, however, only if they can make fats with the carbon.

Fat (lipids) limits how big bacterial cells can be. “If you prevent cells from making fat, they’re smaller, and if you give them extra fat or allow them to make more fat, they get bigger,” said Levin, professor of biology in Arts & Sciences. “Fat makes cells fat.”

“If we hit the cells with an antibiotic that targets fatty-acid synthesis, we really saw a significant drop in cell size” Vadia said.

Also, by turning up FadR, a transcription factor that activates expression of the fatty-acid synthesis genes, the cells got bigger.

“It doesn’t seem to matter what the lipids are, really,” Levin said, “provided you have enough of them. We found we could give the cells oleic acid, a fat found in avocados and olive oil, to supplement diminished fatty-acid synthesis and as long as the added fatty acid got into the membrane, the cells could recover.”

A little place for my stuff | EurekAlert! Science News

Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size: Current Biology


Hydrogenation: transform liquid oil into solid fat
Applied Science

Olive Oil Did WHAT to my Triglycerides??!!?? (Pt 2)

Should you use plastic weed mat?

Comments and Questions 6 20 2017

Kevin answers questions and comments on his videos about a range of topics and emphasises the importance of soil, water and air.
Here I want to emphasise the importance of plants and organic mulch too.
weedmat
One of the comments on his Q&A video was the following after seeing Kevin’s use of weed mat “to keep the soil covered”:

My only experience with weed mat, was pulling one up, and finding stinky dead earth beneath

Now it sounds like this person’s plastic weed mat caused the soil below it to turn anaerobic due to either a lack of air penetrating the mat or retaining too much moisture which then excluded the air from entering the soil. When this happens the soil begins to anaerobically digest and produce alcohols, phenols, and gasses such as methane, the scent of sewer gas.

Not ideal plant growing conditions!

However there can be benefits when using plastic weed mat in the right conditions that does let air and water through, as the mat can help keep the soil moist, especially in drier regions. Weed mats can also warm or cool the soil depending on how much sunlight they absorb or reflect. They can also help prevent erosion. But the main reason people use it, is because the mats also reduce weed competition for plants planted into or near the weed mat. Reduced competition for water, sunlight, and for nutrients.

However the biggest problem with plastic weed mat when growing and assuming the correct mat was chosen for the conditions, is that if left on for extended periods, the soil often tends to breed plant pathogens. This happens when soils are not amended with a high carbon source such as plant leaf litter, plant exudates, or an organic mulch.

In soils that are kept moist and aerated and warm the microbiology and fauna become more active and will chomp through organic matter like there is no tomorrow. In doing so there is an increase in soil carbon respiration in the form of carbon dioxide and methane along with other gasses. This increase in respiration can actually help increase plant growth by providing carbon dioxide concentrated around the plant leaves. The increase in microbiological activity also increases nutrient cycling and plant available soil nutrients. However if the plants aren’t putting the carbon back into the soil via their roots, exudates, or plant litter when they die – then over the long term the soil community suffers.

When there is a lack of high carbon input that organic mulch provides to soil organisms, competition for that soil carbon increases. And the less soil carbon, the less complex organisms will survive. This is particularly important for fungi that rely on the carbon because they are made up of more carbon than other microbiology. Worse, the fungi that do survive the hostile conditions are often those that are plant predators able to fight for the carbon needed in order to survive because they now lack competition. As a result those predators infect plants and reduce yields or even kill them, and so gardeners and farmers search for solutions to their fungal problems in the form of fungicides. As a result fungi get a bad name. The same happens to nematodes.

However for short season plants like seasonal crops in Kevin’s example, this may not be much of a problem as the plant may be ready for harvest before the predators have overcome a plants defences, and he’s adding organic matter every year.

To conclude, when organic resources are plentiful, everyone’s happy and works in symbiosis, and when they’re not happy it’s war. Not quite extremophile Star Wars, but certainly localised Planet Wars, and eventually those wars include us higher order carbon beings in Human Wars that result from desertification and a lack of resources.

Plastic mulch is also plastic. Did you know that most sea salt already has microplastics in it after a little over 100 years of plastics use?

Breaking the Oxygen Barrier in Microbial Cultivation

Oxygen comprises one fifth of our atmosphere, and we take for granted that this a good thing. After all, aerobic creatures like ourselves could not exist without free O2. Not all life shares this feeling. Oxygen and its derivatives (known as “reactive oxygen species” or ROS) can wreak havoc on the biochemistry of many microbes. For some obligate anaerobes such as methane-producing archaea, even a small trace of oxygen poisons them irreversibly (see, for example Kiener and Leisinger 1983). Others fall somewhere in the middle. Microaerophiles (e.g. Helicobacter pylori, the cause of gastric ulcers) require small amounts of oxygen but are unable to tolerate full atmospheric concentrations (Bury-Moné et al., 2006).

Why are these organisms sensitive to oxygen?

Find out why at:
Small Things Considered: Breaking the Oxygen Barrier in Microbial Cultivation