5 Cold Hardy Edible Nitrogen Fixer Plants Worth Growing!

Plant Abundance

Advertisements

Nutrient Availability in Soil Amended with Wheat Straw and Legume Residue

wheat vs faba.png

Study: Residue addition frequency influences respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue

In the image above I’ve basically highlighted the mature dried wheat straw in yellow with a C:N of 80:1 that was first applied to soil. After two weeks the same amount of the green young dry faba bean with a C:N of 20:1 was applied at differing amounts and frequency for two more weeks.

After application of the wheat straw you can see a decline in plant available nitrogen by 75% & phosphorus by 50% in the first two weeks.

After that two week period, adding the equivalent amount of faba bean residue then doubled the original available nitrogen and phosphorus availability, and it seems to me like it may have sustained much higher levels for longer had the study continued. Soil carbon priming in action.

The H1-L4 (High C:N wheat followed by 4 applications of Low C:N faba over two weeks) part of the study however is the most interesting for me. Instead of applying all the faba bean reside in one go, applying it in stages gradually increased (red line) the available N and P. This approach would probably be the most efficient nutrient wise as plant nutrient removal increases as the plant grows, so it makes sense to add the nutrients as it needs them. Plants typically remove nutrients in a sigmoid curve.

sigmoid growth curve.png