Field Trial with Poultry Litter Biochar Versus Inorganic Phosphorus Application, Florida

Advertisements

After 72 hours of exposure to biomass particulate from burning, over 30% of cultured human lung cells died.

Burning of biomass releases particulate matter air pollution that causes oxidative stress as well as severe DNA damage in human lung cells — primarily through the actions of the polycyclic aromatic hydrocarbon (PAH) known as retene.

Researchers first determined the concentration of pollutants to be used in the lab experiments designed to mimic the exposure suffered by people who live in the area of the deforestation arc. Using mathematical models, the researchers calculated the human lung’s capacity to inhale particulate matter at the height of the burning season and the percentage of pollutants that is deposited in lung cells. Based on this theoretical mass, they determined the concentration levels to be tested using cultured cells.

After 72 hours of exposure, over 30% of cultured human lung cells died.

Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells
http://www.nature.com/articles/s41598-017-11024-3

Composting Biochar Creates 200 Nanometer Organic Coating

This won’t be news to the one person following this blog but researchers have now quantified the result of composting biochar.

Researchers found that dissolved organic substances played a key role in the composting of biochar and created the thin organic coating.

“This organic coating makes the difference between fresh and composted biochar,” Kappler said. “The coating improves the biochar’s properties of storing nutrients and forming further organic soil substances.” Hagemann added that the coating also developed when untreated biochar was introduced into the soil — only much more slowly.

Organic carbon coating gives composted biochar a boost

Study:

Organic coating on biochar explains its nutrient retention and stimulation of soil fertility

Rather than composting I prefer soaking my biochar in organic liquids like aged urine (nitrogen and phosphorus), worm tea (plant growth hormones), and compost/extracts.

Plantation Forest Carbon Farming

Here Darryl advocates plantation forests with regular planting and harvesting of trees after their vegetative growth phase, around 25 years in his example. The harvested material would then be made into biochar and amended into these forest soils to increase soil carbon and growth rates of subsequent plantings.

sigmoid growth curve

On one hand this sounds like rotational or holistic grazing where fields are divided and livestock intensively grazes (fells) and manures (biochars) the soil, and is then moved on.  Thereby allowing enough time between grazing for fields to recover, and for plants to benefit from the manures and spend more time in the vegetative growth phase sequestering more carbon.

Only, this is basically clear felling whereas rotational grazing is more like forest thinning if I understand it correctly. If only we still had dinosaurs to thin and manage our forests for us, or alternatively robots that were economically viable.

One issue I see with the clear felling apart from the ecological, diversity and hydrological problems it creates – is the subsequent seedling growth stage where you aren’t maximising canopy area in order to maximise photosynthesis and carbon sequestration.

One solution may be thinning and forest management, and he does mention thinning but never delves into the details.

That brings me to one of the issues he mentions about the cost of making biochar commercially and that made me think about my field Terra Preta interpretation of how the Amazonians might have made it buried in soil, but again that’s clear felling, and probably wouldn’t pass the EPA…

I also wondered what a biochar retort might look like in place around a standing tree… just for fun.

I also wonder if something similar can this be done as a polyculture or as or in combination with a food forest at scale while increase ecosystem diversity and at the same time sequestering carbon through management.

But, no doubt “scale” and “performance” is the issue, and commercially it comes down to what is “economically viable” under the “carbon market” rules and can be done today.

His comment on subsoil carbon is interesting: “It’s more expensive to monitor it and measure it, than it’s worth.”